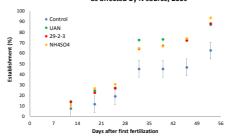


AN EVALUATION OF FLUID AND GRANULAR SOURCES FOR BERMUDAGRASS SOD PRODUCTION.

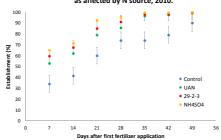
E.A. Guertal, Professor, Soil Fertility Auburn University, Alabama USA

PROJECT OBJECTIVE

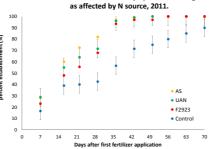
Examine N fertilizer programs (source and rate) to determine the best management for establishment of hybrid bermudagrass (C. dactylon L. x C. transvaalensis [Pers.])

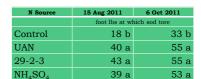

METHODS

- 2009 and 2010 studies. TGRU, Auburn, AL.
- 'Tifway' hybrid bermudagrass.
- Sod harvested in spring of each year, area tilled.
- Three N Sources: 1) UAN (32-0-0), 2) AS (21-0-0), 3) 29-2-3 (20.88% urea-triazone and 8.12% urea).
- Three total N rates: 3, 4, 6 or 6 lb N/1,000 ft² growing season-1
- applied as split applications of 0.75, 1.0, 1.25 or 1.5 lb N 1,000 ft⁻² month⁻¹.
- 2009 applied in June, July, August, Sept.
- 2010 applied in April, May, June and July.
- 2011 applied in May, June, July, Aug.
- AS granular
- UAN and 29-2-3 applied as liquids in total carrier volume of 4 gal 1,000 ft⁻²
- 4 replications, RCB, 6 x 8 foot plot size
- Collected data:
 - Percent establishment collected via line transect and digital photography
 - o Shoot density (Spring of the following year)
 - o Sod strength


August 13 2009

August 1 2011 UAN - 4 lbs N


Percent establishment of Tifway hybrid bermudagrass as affected by N source, 2009



Percent establishment of Tifway hybrid bermudagrass as affected by N source, 2010.

Percent establishment of Tifway hybrid bermudagrass

0 b

21.7 a

22.9 a

23.2 a

Sod strength as affected by N source

and sampling year, Auburn, AL.

Within each sampling date means

followed by the same letter are not

significantly different from each other

25.3 b

49.6 a

65.4 a

47.1 a

14 July 2010 17 Aug 2010 18 Nov 2010

17.6 b

37.5 a

37.8 a

36.6 a

41.9 c

73.0 b

87.5 a

74.4 b

49.5 a

51.9 a

51.7 a

at an alpha of 0.05.

UAN

NH₄SO

Control

29-2-3

NH₄SO.

UAN

RESULTS

- · For most variables there were few significant N rate x N source interactions.
- Shoot density (2009 and 2010 data) was unaffected by N source or N rate. Density was always better than in the control plots.
- Source Sod strength or establishment largely unaffected by N source.
- Application of UAN never caused phytotoxicity issues to sod.
- N Rate Establishment was maximized at 5 to 6 lbs of $N/1,000 \text{ ft}^{-2}/\text{year}.$
- Earlier N application (April) improved establishment resulted in stronger sod earlier.
- Use of a liquid N source such as UAN did not negatively affect sod establishment or strength.

CONVERSIONS

Turf (total)	Field (total)	Metric (total)
lbs 1,000 ft ⁻²	lbs A ⁻¹	kg ha ⁻¹
0.75 (3)	33 (130)	37 (150)
1.0 (4)	44 (175)	49 (195)
1.25 (5)	55 (220)	61 (240)
1.5 (6)	65 (260)	73 (290)
gallons 1,000 ft ⁻²	gallons A ⁻²	liters ha ⁻²
4	174	1,630

Thanks to the Fluid Fertilizer Foundation for the generous support of this research.

Mechanism used to determine sod strength - a measurement of the force required to tear a piece of sod.