

4R Nutrient Stewardship for Improved Nutrient Use Efficiency

Adrian Johnston, Vice President Asia & Africa
Thomas Oberthur, Director, Southeast Asia
Mirasol Pampolino, Agronomist, Southeast Asia

4R technologies and practices

Right Source

Scientific Principle:

• Ensure a balanced supply of plant-available nutrients, utilizing all available sources (organic and inorganic).

Practices:

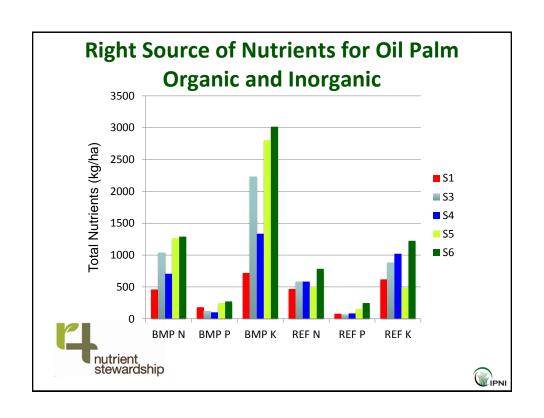
- Credit nutrients from manures and composts
- Credit nutrients from previous crops
- Assess use of enhanced-efficiency sources
 - · Inhibitors of urease and nitrification
 - Coated fertilizers

Balanced nutrition And FUE in China

	_	Treatment		
Reference	Crop	N	NPK	
		N recovery by crop,%		
Zhu, 1994	Barley	28	51	
Jin, 2001	Wheat (11 yrs)	31	70	
	Corn (5 yrs)	35	66	

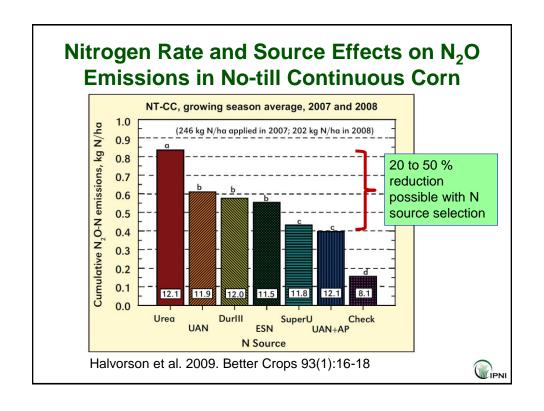
Access to a range of fertilizer products is often a major challenge for small holders

Nutrient Expert Hybrid Maize Field evaluation in Indonesia


Parameter	Unit	FFP	NE	Difference (NE – FFP)
Grain yield	t/ha	7.5	8.4	0.9 ***
Fertilizer N	kg/ha	173	160	-12 ns
Fertilizer P ₂ O ₅	kg/ha	43	33	-10 *
Fertilizer K ₂ O	kg/ha	28	41	+13 **
Fertilizer cost	USD/ha	126	126	0 ns
Gross return above seed & fertilizer	USD/ha	1761	2032	+271 ***

***, **, *: significant at <0.001, 0.01, and 0.05 level; ns = not significant

Data from 22 farmers' fields in five sites under irrigated (rice-rice-maize) and favorable rainfed (maize-maize) environments, 2010-2011


Seed cost: USD 5.08/kg; Price of maize grain: USD 0.27/kg; Price of fertilizer: actual local prices; USD 1 = IDR 8850

Parameter	Levels	Treatmen	t	Δ	D. IT
		BMP	REF	Δ	P> T
Yield	All	26.0	22.6	3.4	<0.001
	Site 1	30.5	29.0	1.5	0.017
	Site 2	28.4	23.0	5.4	< 0.001
	Site 3	23.7	18.9	4.8	< 0.001
	Site 4	22.3	19.8	2.5	0.000
	Site 5	20.7	17.1	3.6	< 0.001
	Site 6	30.2	27.5	2.7	< 0.001
	Yr 1	26.5	23.5	3.0	<0.001
	Yr 2	25.6	21.7	3.9	<0.001
	Yr 3	26.0	22.4	3.6	<0.001
	Yr 4	25.8	22.6	3.2	< 0.001

Right Rate

Scientific Principle:

Assess soil nutrient supply and plant demand for nutrients.

Practices:

- Soil test
- Deletion plots
- Balance crop removal
- · Determine crop yield potential
- Assess fertilizer:crop price ratios

Selecting the Right Rate in Oil Palm

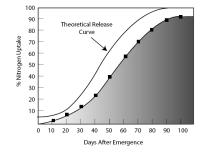
Fertilizer rates are determined based on:

- Soil analysis of planting sites
- Nutrient balance = input removal
- Tissue testing in mature stands
- Plantation trials evaluating FFB yield responses

Selecting the Right Rate in Oil Palm

<u>Plantation Intelligence</u> – a new approach to fertilizer management:

- Concept uses plantation data on block yield and fertilizer management, along with soil, weather, etc.
- Helps to identify where the yield response is best and allows for further improvement...intensification.
- Helps in determining where to harvest with limited labor.


Right Time

Scientific Principle:

 Assess timing of crop uptake, soil nutrient supply, weather, loss risks and field operation logistics.

Practices:

- Split-application for increased FUE
- Suit tillage and planting operations

Right Time, On Site Blending

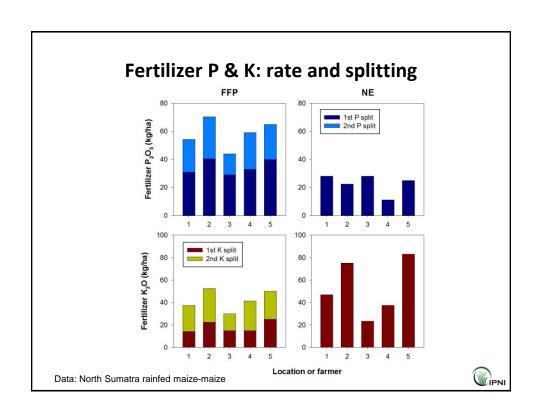
Blending allowed for 4 applications of N, P, K, Mg, S, and B per year at reasonable labour requirements

Normal estate practice is 2 applications of N as Urea, K, Mg, S and B, and 1 application of P, N and S as Ammofos)

Right Time, On Site Blending

	<u>N</u>	<u>P</u>	<u>K</u>	Mg
Fertilizers blended, applied 4x per year				
Supplied in fertilizers (kg/ha)	134.6	12.2	243.0	26.5
Removed and fixed (kg/ha)	78.7	8.7	107.2	16.1
Fertilizer recovery efficiency (FRE, in %)	58.5	71.5	44.1	60.8
Fertilizers applied as straights				
Supplied in fertilizers (kg/ha)	129.2	11.7	233.3	25.4
Remnoved and fixed (kg/ha)	68.5	8.3	87.2	15.9
Fertilizer recovery efficiency (FRE, in %)	53.0	71.2	37.4	62.3

Details will be presented Forthcoming PIPOC 2013 Conference in Kuala Lumpur, November 19 - 21 Effect of nutrient application frequency on nutrient uptake in oil palm production on sandy soils Jóska Gerendás¹, Bayu Utomo², Kusnu Martoyo², Christopher R. Donough³, Thomas Oberthür³ 1 - K+S Kali GmbH; 2 - PT Sampoerna Agro Tbk; 3 - IPNI SEAP

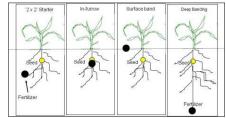

nutrient stewardship

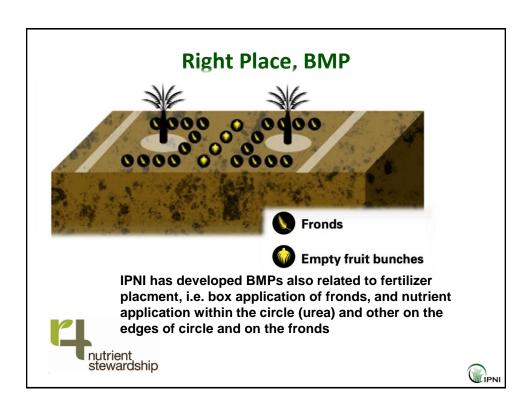
Timing of fertilizer N application on Maize (days after sowing): NE vs FFP

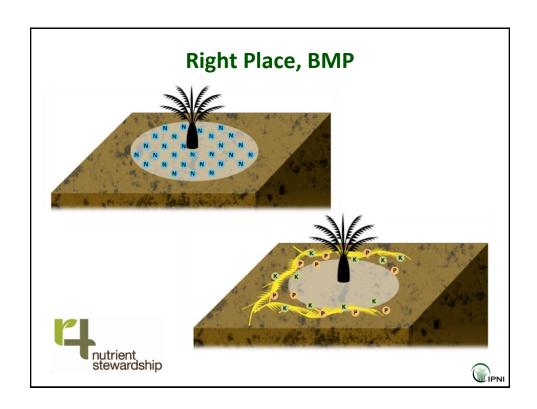
Fertilizer application	North Sumatra (n = 5)		Central Lampung (n = 5)	
	NE	FFP	NE	FFP
1st	7	15	7	9-14
2nd	25	40-45	25	23-35
3rd	38	-	35	35-45
4th	-	-	60	-

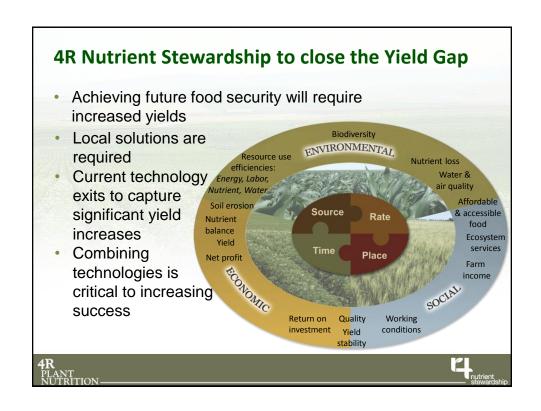
Right Place

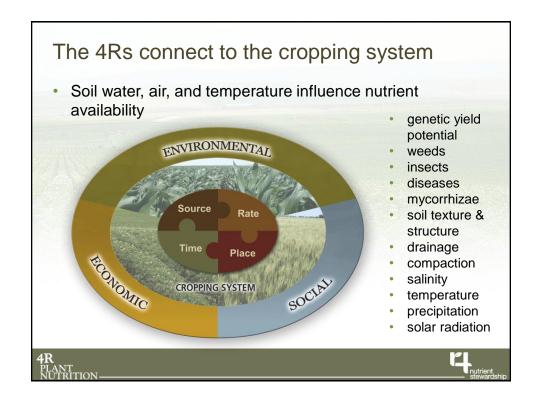
Scientific Principle:

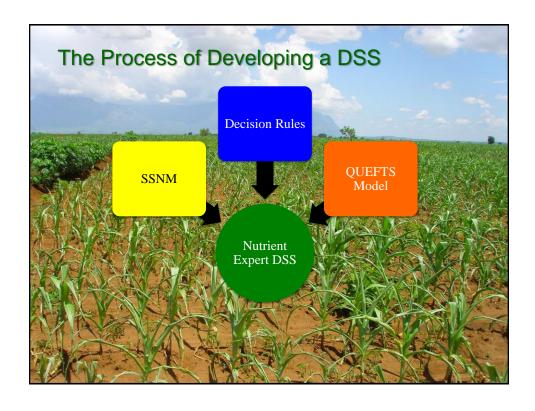

• Place nutrients where they are accessible to the crop.

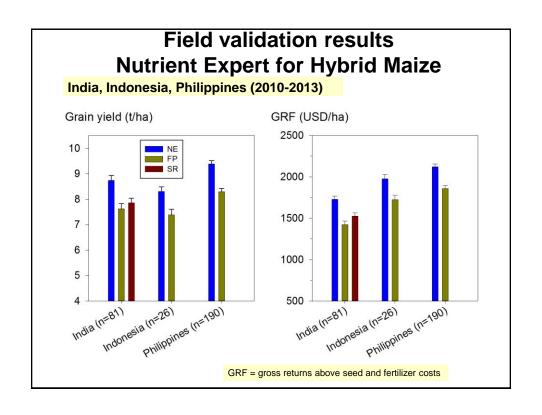

Practices:

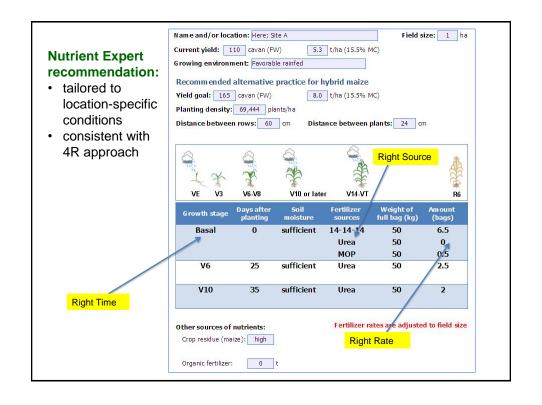

- Site-specific sensing technologies
- Starter placement near seedlings


Improving FUE with Placement

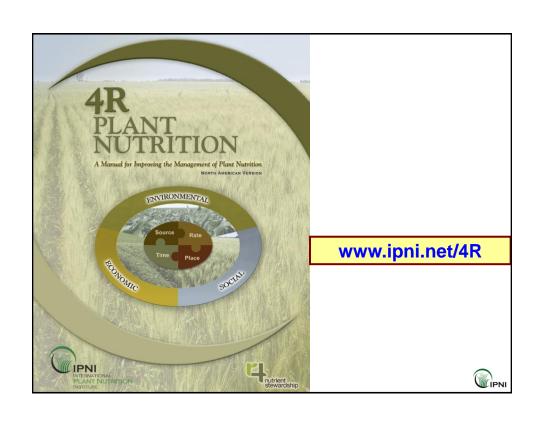

- On nutrient deficient soils, placement can play an important role in improving yield and NUE.
- On nutrient surplus soils, placement is of little significance.
- Placement of fertilizer is a challenge in small holder farms




Making 4R Nutrient Stewardship Work



- Nutrient Expert Decision Support System software provides the opportunity to integrate the 4R principles into a fertilizer recommendation.
- This has proven particularly successful where soil testing infrastructure is weak, expensive or not timely for multiple cropping systems.



Summary

- The right source, rate, time and place for any nutrient application is the combination producing the most sustainable outcome for stakeholders: Production – Profit - Environment
- 2. Finding ways to better report field performance of production systems will also help meet expectations for improvement in environmental and social impacts.
- 3. Nutrient management is only one of several crop management factors which need to be addressed in improving the sustainability of future food production systems.

