

IRR

Major crops: Share of global fertilizer use (2007)

Crop	Area	Yield	Total fertilizer use $(N + P_2O_5 + K_2O)$		Total N use		Total P ₂ O ₅ use		Total K ₂ O use	
	(Mha)	(t ha ⁻¹)	(% of total)	(Mt)	(% of total)	(Mt)	(% of total)	(Mt)	(% of total)	(Mt)
Maize	158	5.0	15.3	25.8	16.8	16.9	12.4	4.9	14.2	4.1
Wheat	214	2.8	15.1	25.5	17.3	17.4	16.2	6.4	6.0	1.7
Rice	156	4.2	14.4	24.3	15.6	15.7	12.3	4.8	13.3	3.8
Other cereals	-	-	4.8	8.1	5.1	5.1	5.1	2.0	3.3	0.9
Sum			49.7	83.8	54.8	55.1	46.0	18.1	36.7	10.6

1	nutrient-recovery rate (rice, 1 st season):	nutrients not used in season (rice; Mt):			
N	30-50%	11.0 - 7.85			
P ₂ O ₅	25%	3.6			
K ₂ O	35-50%	2.47 – 1.9			

- IFDC report, SJ Van Kauwenbergh (2010):
- world rock P reserves: 340,000 460,000 mmt
- this will last for 300-400 years

- waste of resources (especially P)
- waste of energy
- source of pollution (especially N)
- contribution to climate change
- high costs for (poor) farmers

How can we improve nutrient uptake and use efficiency?

- IRRI
- Site specific nutrient management/ slow release fertilizers
- Increased uptake efficiency of fertilizer (reduced net loss of fertilizer nutrients)
- More roots and/or different root architecture
- · Better mobilization of "fixed" nutrients (P, K)
- High affinity transporters
- Increased internal efficiency
- Improve plant metabolism / photosynthesis
- Increase harvest index / new plant type
- Biological N fixation by exo- and/or endo-symbiosis
- Tolerant genotypes (reduce yield losses due to biotic and abiotic stresses)
- •

Summary and outlook:

IRRI

- Pup1 does not function via known P-uptake mechanisms
- Pup1 major gene is a novel regulatory gene with large effect on root growth;
 other Pup1 genes are under validation (cell wall related)
- mapping of QTLs + MABC into mega varieties is a straight forward and successful breeding approach --- candidate gene approach is limited to known mechanisms/genes
- important:
 - (i) Good QTL donor (IRRI's strongest QTLs come from un-adapted germplasm)
 - (ii) QTLs must have effect in different environments and genetic backgrounds
- Pup1 is most likely best suitable for aerobic, drought-prone environments
- For intensive systems we need to
- (i) clearly define targeted mechanisms (higher and/or faster nutrient uptake? Higher internal nutrient-use efficiency?...)
- (ii) develop well defined screening protocols to identify donor varieties for this trait